从一张图开始:逐步实现一个机器人框架
在deepseek匹配下,得到这样一个图:!(data/attachment/forum/202506/19/101438h1y9y9k9dtzk11in.png "deepseek_mermaid_20250618_c2a891.png")
以下是需要构建的核心ROS2节点列表(基于Ubuntu 24.04 + ROS2 Jazzy):
---
### **必须构建的ROS2节点**
1. vision_processor`节点(感知层)
* **功能**:处理相机图像数据
* **订阅话题**:
* `/camera/image`(原始图像输入)
* **发布话题**:
* `/object/detections`(物体检测结果 → 规划层)
* `/vision_processor`(视觉处理中间结果,可选)
2. navigation`节点(感知层)
* **功能**:融合传感器数据生成导航信息
* **订阅话题**:
* `/sensor/pose`(相机位姿)
* `/IMU/encoder`(IMU和编码器数据)
* **发布话题**:
* `/obstacle/map`(障碍物地图)
* `/navigation_obstacle`(导航障碍物信息 → 交互层)
3. task_planner`节点(规划层)
* **功能**:任务规划与路径生成
* **订阅话题**:
* `/system/status`(系统状态)
* 规划层内部状态反馈(来自 `motion_controller`)
* **发布话题**:
* `/point/planned`(路径点序列 → 运动控制)
* `/task_planner`(任务状态更新)
4. `motion_controller`节点(规划层)
* **功能**:路径跟踪与运动控制
* **订阅话题**:
* `/point/planned`(路径点输入)
* `/object/detections`(物体检测结果)
* **发布话题**:
* `cmd_vel`(速度指令 → 控制层)
5. `qt_ui`节点(交互层)
* **功能**:用户交互与状态显示
* **订阅话题**:
* `/scene`(场景状态)
* `/navigation_obstacle`(障碍物信息)
* `/system/status`(系统状态)
---
### **其他需集成的节点/模块**
1. **传感器驱动节点**(外部依赖):
* **相机驱动**:发布 `/camera/image` 和 `/sensor/pose`
* **IMU/编码器驱动**:发布 `/IMU/encoder`
2. `ROS2 Control` 节点(控制层,官方框架):
* **功能**:执行底层运动控制
* **订阅**:`cmd_vel`(速度指令)
* **发布**:`/joint_states`(关节状态反馈)
3. **伺服驱动器**(硬件层,非ROS节点):
* 通过 `ROS2 Control` 的硬件接**互
---
### **关键消息流总结**
1. **感知 → 规划**
* `/object/detections`(物体检测)→ `motion_controller`
* `/obstacle/map`(地图)→ 路径规划(图中未明示订阅者,推测由 `task_planner` 使用)
2. **规划 → 控制**
* `/point/planned`(路径点)→ `motion_controller` → `cmd_vel` → `ROS2 Control`
3. **系统状态循环**
* `/system/status`(系统状态)→ `task_planner` 和 `qt_ui`
---
### **开发建议:**
1. **使用标准消息类型**:
* 图像:`sensor_msgs/Image`
* 路径:`nav_msgs/Path`
* 速度:`geometry_msgs/Twist`
* 关节状态:`sensor_msgs/JointState`
2. **自定义消息需求**:
* **物体检测**:`vision_msgs/Detection2DArray`
* **障碍物地图**:`nav_msgs/OccupancyGrid`
* **系统状态**:自定义 `SystemStatus.msg`(包含电池、错误码等)
3. **工具推荐**:
* **RVIZ**:可视化 `/obstacle/map` 和 `/point/planned`
* **rqt\_graph**:调试节点拓扑
* **ROS2 Control**:配置硬件接口(YAML + URDF)
---
### **总结需主动开发的节点**
| 节点名 | 层级 | 编程语言 | 主要依赖库 |
| --------------------- | ------ | ---------- | ---------------------- |
| `vision_processor`| 感知层 | C++/Python | OpenCV, ROS2 CV Bridge |
| `navigation` | 感知层 | C++ | Nav2, TF2 |
| `task_planner` | 规划层 | C++ | ROS2 Action |
| `motion_controller` | 规划层 | C++ | ROS2 Control |
| `qt_ui` | 交互层 | C++ | Qt6, rclcpp |
完整系统需通过 **Launch文件** 集成所有节点,并配置参数(如传感器帧率、控制频率等)。
### 系统集成说明
1. **完整节点列表**:
* `vision_processor`: 物体检测
* `path_planner`: 路径规划
* `task_planner`: 任务规划
* `vision_control_ui`: 用户界面
* `navigation`: 导航控制
* `motion_controller`: 运动执行
2. **数据流**:
```
vision_processor → (检测结果) → task_planner
task_planner → (任务) → path_planner
path_planner → (路径) → navigation
navigation → (速度指令) → motion_controller
motion_controller → (关节指令) → 机器人硬件
vision_control_ui ↔ (UI交互) ↔ 所有节点
```
```
```
3. **关键特性**:
* 所有节点参数化配置,可通过launch文件调整
* 使用标准ROS消息接口
* 差速驱动模型支持多种轮式机器人
* 导航算法包含简单的位置控制回路
4. **使用流程**:
1. 启动所有节点:
```
ros2 launch vision_processor vision_processor.launch.py
ros2 launch navigation navigation.launch.py
ros2 launch motion_controller motion_controller.launch.py
```
```
```
2. 通过UI或命令行发送任务
3. 系统自动执行检测、规划、导航流程
这些实现提供了完整的ROS 2节点框架,您可以根据实际机器人平台和需求调整参数和控制算法。特别是导航控制算法和运动学模型部分,可能需要根据您的机器人具体特性进行优化。
错误:
--- stderr: navigation
In file included from /opt/ros/jazzy/include/rclcpp/rclcpp/logging.hpp:24,
from /opt/ros/jazzy/include/rclcpp/rclcpp/copy_all_parameter_values.hpp:27,
from /opt/ros/jazzy/include/rclcpp/rclcpp/rclcpp.hpp:171,
from /home/kevin/vision_control_ws/src/navigation/include/navigation/navigation.hpp:4,
from /home/kevin/vision_control_ws/src/navigation/src/navigation.cpp:1:
/home/kevin/vision_control_ws/src/navigation/src/navigation.cpp: In member function ‘void Navigation::path_callback(nav_msgs::msg::Path_<std::allocator<void> >::SharedPtr)’:
/home/kevin/vision_control_ws/src/navigation/src/navigation.cpp:42:31: warning: format ‘%d’ expects argument of type ‘int’, but argument 5 has type ‘std::vector<geometry_msgs::msg::PoseStamped_<std::allocator<void> >, std::allocator<geometry_msgs::msg::PoseStamped_<std::allocator<void> > > >::size_type’ {aka ‘long unsigned int’} [-Wformat=]
42 | RCLCPP_INFO(get_logger(), "Received new path with %d points", msg->poses.size());
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| |
| std::vector<geometry_msgs::msg::PoseStamped_<std::allocator<void> >, std::allocator<geometry_msgs::msg::PoseStamped_<std::allocator<void> > > >::size_type {aka long unsigned int}
/home/kevin/vision_control_ws/src/navigation/src/navigation.cpp:42:56: note: format string is defined here
42 | RCLCPP_INFO(get_logger(), "Received new path with %d points", msg->poses.size());
| ~^
| |
| int
| %ld
---
--- stderr: vision_processor
/usr/bin/ld: warning: libopencv_imgcodecs.so.406, needed by /opt/ros/jazzy/lib/libcv_bridge.so, may conflict with libopencv_imgcodecs.so.410
/usr/bin/ld: warning: libopencv_core.so.406, needed by /opt/ros/jazzy/lib/libcv_bridge.so, may conflict with libopencv_core.so.410
---
已经实现的节点图:
要让ROS Jazzy与OpenCV 4.10兼容,需解决两个核心问题:**ROS默认依赖旧版OpenCV**,以及**符号冲突/API差异**。以下是完整解决方案:
---
### **步骤1:源码编译安装OpenCV 4.10**
**bash**
```
# 安装编译依赖
sudo apt install -y build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt install -y libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libdc1394-22-dev
# 下载源码
git clone https://github.com/opencv/opencv.git
cd opencv
git checkout 4.10.0
# 编译安装(关键:自定义安装路径)
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv-4.10.0 \
-D BUILD_opencv_cudacodec=OFF \# 禁用CUDA避免冲突
-D WITH_GTK=ON \
-D BUILD_EXAMPLES=OFF ..
make -j$(nproc)
sudo make install
```
---
### **步骤2:从源码重新编译 `cv_bridge`**
#### 2.1 创建独立工作空间
**bash**
```
mkdir -p ~/cv_bridge_ws/src
cd ~/cv_bridge_ws/src
git clone -b ros2 https://github.com/ros-perception/vision_opencv.git
```
#### 2.2 修改 `cv_bridge`配置
编辑 `vision_opencv/cv_bridge/CMakeLists.txt`:
**cmake**
#### 2.3 编译 `cv_bridge`
**bash**
```
cd ~/cv_bridge_ws
source /opt/ros/jazzy/setup.bash
colcon build --packages-select cv_bridge \
--cmake-args -DCMAKE_BUILD_TYPE=Release \
-DOpenCV_DIR=/usr/local/opencv-4.10.0/lib/cmake/opencv4
```
---
### **步骤3:解决符号冲突问题**
若运行时出现 `libopencv_*.so`冲突,强制链接新版OpenCV:
**bash**
```
# 创建自定义环境变量脚本
echo 'export LD_LIBRARY_PATH=/usr/local/opencv-4.10.0/lib:$LD_LIBRARY_PATH' > ~/set_opencv_env.sh
source ~/set_opencv_env.sh# 每次使用ROS前执行
```
---
### **步骤4:在ROS项目中使用兼容环境**
**bash**
```
# 终端1:加载cv_bridge和OpenCV环境
source ~/cv_bridge_ws/install/setup.bash
source ~/set_opencv_env.sh
# 终端2:正常启动ROS节点
source /opt/ros/jazzy/setup.bash
ros2 run your_package your_node
```
---
### **关键注意事项**
1. **版本检查**
在代码中验证OpenCV版本:
**cpp**
```
#include <opencv2/core/version.hpp>
std::cout << "OpenCV version: " << CV_VERSION << std::endl;
```
2. **API适配**
OpenCV 4.10中移除的API(如 `CV_BGR2GRAY`)需替换:
**cpp**
```
// 旧版 (<=3.x)
cv::cvtColor(image, gray, CV_BGR2GRAY);
// 新版 (4.x+)
cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);
```
3. **隔离依赖**
在 `package.xml`中声明兼容性:
**xml**
```
<depend>cv_bridge</depend>
<build_depend>opencv</build_depend>
```
页:
[1]