-
如何增大一个直流电压的带载电流
使用运放输出了两路0-10V直流电压,因为运放的输出电流只能到20mA,现在应用上需要输出电流能达到每路200mA,请教有什么简单可靠的方法吗?
10205浏览量 8回复量 关注量 -
为何电压跟随器在负电压区域无法正常工作?
[align=left][color=rgb(36, 41, 46)][backcolor=rgb(255, 255, 255)][font="][size=16px]大家好:[/size][/font][/backcolor][/color][/align][align=left][color=rgb(36, 41, 46)][backcolor=rgb(255, 255, 255)][font="][size=16px]新手入门,刚接触电路设计,前来提问,多请包涵。[/size][/font][/backcolor][/color][/align][align=left][color=rgb(36, 41, 46)][backcolor=rgb(255, 255, 255)][font="][size=16px]我使用NE5532搭了一个电压跟随器,正负电源输入分别为6.0 V和-5.5 V,在正输入端接直流输入,测负输入端的电压。电路如下:[/size][/font][/backcolor][/color][/align][align=left][color=rgb(36, 41, 46)][backcolor=rgb(255, 255, 255)][font="][size=16px][img]https://file1.**/web2/M00/81/FB/wKgaomQsMdWAVC31AAA2uMrKeJA234.png[/img][/size][/font][/backcolor][/color][/align][align=left][color=rgb(36, 41, 46)][backcolor=rgb(255, 255, 255)][font="][size=16px]其中反馈回路上要接外部电路,用R7代表,目的是使得负输入端的电压跟随正输入端,并且R7上没有电流通过。[/size][/font][/backcolor][/color][/align][align=left][color=rgb(36, 41, 46)][backcolor=rgb(255, 255, 255)][font="][size=16px]在测试这个电路时,发现当输入电压Vcc > -0.8时,负输入端的电压基本等于Vcc,一直到3.3 V都正常;然而一旦Vcc < -0.85 V,负输入端的电压就恒定在-0.82 V了。我尝试更换了一些其他运放,如HA17358、LM2904N等,均是同样的现象。想请教大家,这是什么原因?[/size][/font][/backcolor][/color][/align]
4404浏览量 6回复量 关注量 -
恒流电路三极管不导通的问题
[i=s] 本帖最后由 rocdevil 于 2023-3-25 18:09 编辑 [/i] 我使用了下图的恒流电路,希望通过I1_REF(DAC出来的)和R16的比值在1A~3A的范围内控制电流,理论上I1_REF除以R16电阻值就是恒流值,Q3的C极接负载(最大约3A)。在调试时发现三极管在带载(3A)情况下不导通,具体细节是I1_REF小于1.1V时三极管Q3不通,大于1.1V时三级管Q3才会导通,这时带负载也工作,但是达不到我希望的恒流控制。我以为是三极管Q3放大倍数不够,换了个达林顿管也是一样不行。请各位大神指点这个恒流电路可以实现恒流控制吗,我的问题是不是和运放的增益有关啊?后面的运放若换成比较器可行吗?在这里先谢谢各位啦![img]**9QbgHgPrSOY8NaY+KfOPsFsNoOPoP1ep38+J+5pIyNKdQc/YcWzNeWJ1Bq5sP0lYQDDdHa+vYCAjTYmXVSITuv5G588TuHofu5fJrs94e+vCGhuwOp0dcIhctRgVSbh/ly4dJikp3NTFEIQaLSfHGniVuzcHkmHethkvu8bw07856DJjWZNbh/61yjdpe8n9ODqYQ04BmalxzD/lyis9LEqEogzXDs2ZOn8QJw90ovaSHfx44nqVbyExW04wc9ZRZs46yu/7synvPPc1tpGTXG4GgJWlA1Ajh1sWjKhevVzs7FNNXQxBqNFsbe0puve7R2DKnXhxtCc/TTvGxjwddn0fxyYr9s71ZDLk0t32o+Ps2SzM6wVROP8gc1brWLkcNMnpnNWvZ7T3s8wdageAyq8hk4ZH8EOsHhoDKKnfrQmjnyyKy6vKc0zeWL7XV2MD9mHprqazZ0cyCYUWNOnohUNePp4+tshLazGmzWbX/ONsTDSn40vN6OlTRWdBFgRBqEYMBgMGgwyXPs157ovlvHmgM/tGSbAfMIABPQn7E7jqLweVNXU9ZRQtvVVB5HGmrDNn1KIAWrdqwPG39RiAhF+X8aK6MzMG2ZVYW0+2zJV2zeXcuDkrcY92r7lsb1ctA/bjSXIuXbp3FUFeXtG/H30sx97+3vuzsYEfZ2iRyQB0RC/awjsb7BgzsQlPu+QRtngDL4b5sWdJI3KLW4wppzQsDlgtJ/6JIKqWJ80v/MerL+rYur0VgSJjBUEQHlhObCJr98cT7ehHlyEejHmtHlKDQNyyMti0JYWUSxKbdibju2wzU3P86f1yGwa5y8iJS2D1f1lcuxjN1OmZmOde41SEhm4LBvBWOxUSYKkA0GOuAEkhx0zK5a8Xl/KnhT+dveVYNXmMUXUKid0Vw/7YPJK2neNEiwACCy6zdNcV8qIvsPRQHYaEWnMtMo6w2DyiD1wktq03vtagv5LOlrDM6jld3QcT5CQn3ztgDQaIiJTRINCAvIywc3Y28O03OpRK0J46QIfeyYwO68PQG/X8eaz5LZ7HXmyAl1TIogHz2fvKy8zuXnx9oqdoyI604/QdquH7DaH432fAzpx1lJ9+DudMxKv3t6FgFK+PfYvUtFSW/vO3qYsiCCZROdPVJRHaeiE5We9iZXV7L9XKpc/JJjpei7O/Ay7mFbPPankH+923urJXeiB6jv8TwYnA5nRzKRngFjz98s05Ze9oMSYB+jwO/p5Mk4md7ztcBUEQBNOSrG1o0LiC91mxu6vu9CQn5SEv2b+qnNslbD/Fn7su8NNrO9mYaazyCYIgCNWFCNhbSPj526K7fI2L93WTLFGnayi/rnmOjzwSWH9Ua6wCCoIgCNVEtawinvhR2Y2cDAY4HSGjUUMDUhmXETY28PNPWmQyiYDhIfSad4AftwXzc3fLoisQXQ4Htl7Dr1ttXO+1L7k1fvVdUPqI6xZBEIRHXbUMWIOBMkMzLw+OHZeoW0dXZitiCwsDWi0olSB5NGLuCh0ffraWgStcaORng6ujDS2eDcBVMnDl9hZjFlf57bXtHPD2p51zHknt2vCWCFhBEIRHXrUM2G++Lrv+NjUV/lkq56svdTRseH8NpW2aBPPLyuBSv+fYsD4/hdcvscSBYd92IfSyDhdfR9ys7neEEUEQBKEmqpYBW9WonOwJcjJ1KQRBEISqpMYGrE5XAKhQq68BNqYujlDNxJxTkZGuNHUxqoURL65jw8bzmJvX2NPJI+nSpWxTF6Haq7GfCLk8C+iCpeUcoEFZqwvCLTxrT0ClLLhlWU5cIpt2pZOmAUkux6aWM+271sarRKf07KhzLDvrwLDe16fBMnDlWAwrw9VonWozqG8t7KhZUtPU2NiY8dmn7UxdFMEI7OzMTF2EaqvGBmyRw6YugFBNWVrWwtIS4GaXK2sfD3zmb+Wt8y357wdXjk3fSJtvfPh3W3taW96cZHmysjODiwNWGxHOG/NsmPZzEMnfLmfQtM6sfdelxn3w+vUNYNjQCu6lLwjVXE37nJfqzrsKPUn7olh/Xo9ni/r0aFg0RJcuKZF/N1xF51GbZ3s4U/rgYAWc2xXL7ug8NDfaTsmwDPRlaEe7+5ujUKhSPpggZ+8+CUmC87EyCguh3eNK9v8n4VHbwMWE/KKJnK3MqVXbhT7vBTFz1hHWnG5L61DpxiTLX++9vkc9J5ZEkBLwLC6SAufnvcnrdZz9Y7vSwbSjwgmCUAlqfH8SXfrVoruK9Vlcb3ucu3cvry1V0W+oJxe+28z8WD3kJvLJmChs+zamXcIBXluQSeltlc3wb2fP+VkHCPdozMsvBfN8Z0vO/JdKYeW9LMEIIs/IOH1aRo/uegY+p2Pgczp6dNdjY23g0uXbW4driV4dS7R3Xbo0KPExksmKJ40AMKAp0HI5IRstIHcwxyr5GgnijSIIj4Qafwcrd3a49a5Cr2bZj2ewH9oGB7mC7k2z6Tsvid6Bh/nHrjEfOUiYd6vFpf7HOTKkI6Gl3WnIlFhZypDJJVQqBQZPXz5600AFjQ8tmNCrI3V8/NGtl1YqFSxfcTNE8+Pi+X7IDuakN2bFrlaE3rUNnZzmgxvj9vxuJgQ0pUnyOSLtrHCr8Z86QRDgEbiDBW69qyhM5fApJR4eckCGq7sFCceTOXU4FSsPG1SA5GqNY0IKR+JSmDtyId3fPMTk0UsJCVnLn/HFMw0a9GSnXCU6MoFff41BbSnq/B4V5j7ejP+2DW3jo1l55t63o6qmrdi0uzsDglzxNeSi6l6f1qLNiCA8Eh6NgC3JUEhunhxzi+KvJRmGPA25uVpUN7oZyJAMWvLMnGlTFy5LtXhn5rN80ewSK/ddb/SiJ+N8CkePpXIuXUe1m/NPeCB6wIAByashP3/vysrXd7Ix496/fZWrM6G1kvh5iyNffOyDdeUUVRAEE3v0AlZhjbuzDnVu0Ukx/5oGycUaN3dLNOpC9AD5BeRIlrg5yZAr5Ni5WmGJDFtbJTpN8R2sTIF3m0CeH9Kcz9/0wf7R+0k+cnLiLrLmQBYZJ+JZfyoP52c680unREY+u41ZOzJRF0+ynBZzif2xGgD06lwit51g8s9ZDPy9B895iJG+BOFR8eg9DVK40KOjxIxoDbRUERWTR9vu3gTXS0H+UwY51MY66goZbX3oYAV37WptMFB02yrDxUMMZPEosPapw/iVYxlfYlmXGa9wscTXfX58kT4lvtbmFKJo1IBPuqhEC3NBeMTU+IDVZ10rcVfhSWdfFe3eb8uaD8NYbGfLobwgvhhqg5myFZ+u3cUPf5vheUjLiM8b456dwYZj17gsXeR0tIZ9UWpic2PZVfsaBxPySdl+jhOhATRxEXclQulUrvbUL3s1QRBqoBofsJKd7R13FZJbfX6Y5Ulsop4+z1hjCYA1z0zpQZvYbHTP1MfNEsCFkf+MYWTxdk3WvcEHxf/veLFV5b0IQRAEodqp0QHrfa9vmlni63/7QgUuvg7GK5AgCILwyKixTXNUOh0jAAu12tRFEQRBEB5BNTZglfKiJiXWRQPKCkKFyY46x4K1GSVGKdaTtC+SeQtPsylSAxQQtS6Mtz6KIL604cAKcji+MZLfF5xi2Y50Msqe3lgQhGqoxgasIBjDjQH97zn0phxvtwL277xK9m1dZPNPH2dw57X8keXIEz29cIrYT88Om1l2fQATQRBqDBGwgnAfrg/of2Om2OtDb3aqi4Pcju5Ns/llXipKBxXWtzcu16UxY/ROEvp0Y8ogN7zc7On0Rk++bhLH6+9FkioyVhBqFBGwgnC/yhx6M+Xmuvpclr72N0O/j+ZYdCI7j1sQ0tK+RJ9YFS1buZB7+CInxCQAglCj1OhWxIJgdMVDb7reMvRm4Y3vnVh0nMyBvfmjkzVSdiR25lpybqs3LtTokDlY4ChGohCEGkXcwQrCwyh16M2imYQNWYn8b+oFch3Miz5oNn68/oo14RsTybq+vT6bdZuv0WlMME3F5a4g1CgiYAXhYRQPvRkTrQF0xUNv1gFAZu/Dt9858c/InWzNMFBwKAnGD2BWswS+np+Clnw2TD9EyvN9WNgpiz0x4iGsINQkImAFoYScHBk5Odzxx1Bcq6u/Y0B/Be3eb4vvzjAWrz7Bv3lBfDFYQcSOZC5cTifCszlve59h+MA9LNt+iG61fqHdaweZu/0qGm024f8e4cOBv+HSeAsbr4g5mQShJhGVUoJQwuy5cmbPvfNhaIuQortLydG5fENvjuxD3PUxNpe+yfDi/w758Nb9fhL2Pp9U8GsQBKFqEAErCMWmT9Xy6aSi3q3fTZFz5YqM774pGk7CuqxJXEsdelMQhEeZCFhBKObvD8VzEOLqUvT/kBBRbSsIwoOpNgF7+t+lbBj7FgZD+U54Bn1Rld68dh2Q5OXv/66qHSUAACAASURBVNBh0ke0enPsA5VRqDmiY2aRnp4FjDN1UQRBqKaqTcD6dOpI79kzb7Y2KYesxETsvLzu6zh12re936IJNVDdOqewsEg1dTEEQajGqk3AWrm40ODZZ0xdDOERYW5e9EcQBOFBVZuAvV1+VhaZ8Rceej/WbrWwrlWrAkokCIIgCDdV24BdO2oMkcuWP/R+fLs8wbBN6yugRIIgCIJwU7UN2H6LFtJr5i8PvR9Vmf0vBEEQBOH+VduAlRQKLBwcTF0MQRBM6Lf5EuvWS/zvFy3u7uXbZuJHciZ+qCu7b7MgPKRqG7C3i1i6jOzLSWWup7KxptlLL1ZCiQRBMLawMImt2yR8/VW8OlLHhA909wzavDz45jsFzzytp2VL0cdZMK4aE7DHFiwkJyWlzPUsnZwIHjIYhZlZJZRKEARjqlXLQMtQA6NH6Zj8pZw5c+XlClpBqAw1JmCHblhr6iLUIAbUKVkk5ijw8LbGutRxOnRkJmaRorWgro8Fd+3RotOQciEXrZMdHnZlzS2h50rcNQxe9jjVmHemcD+0SYdYvT0Oy+DO9Ax2Kdc2Mhn076+nXz89y5dLImiFKkPMplOt6TixeBcD28zEJ3QF7827yNXbZzzTq9nzy3o6Bs6k7aeX0JT4lnrjVoJ9ZtF2+CF2phgAA0k7D/H2qG188+c5tiw/xMtd/+KF2SnklNguP/IUo3qtYPxv59i6+ggfvLSZnw7m33ZgA1cPHGJwrw1MWX6WeR+tYejkeFLuMSObNvIwfVttYklacdWdOok/PlpD23r/I6jnBiZ8tpdJH27ngynRnMl+4B9amX6deYS//3Fm27Z6bNh4zngHEkrQk7L5M4ZMPIh7zwHlDteSrgftiWOF/LlQy85dRVXHb70tJ6nsp0eCUOFqZMBeu3SJpYMG83efvizpN4D06BiTlUV3eTtT33qNd2ceIEOv5+rBWYzq1YUnBn3KivOasndwT3KaDG7H8EY6NEHBfPGKJw63/0YlSx5/rRltVNmE77nE5RsBp+P0nnjOXJbRalRzOtWSoY0MY/C7V3nqh658MT6EN97vzN+Lgsj+ch1fHiwaBJ+CS3zxwgH0o3sz77NQxr7djh+n1SN64nZWpN18pqVPjubNV84S/H0vfngvlE9/6s5zibt4dX4mulJ/UFeZ8+kRjuWUeC5m6c7wT5vSQq6h8ctd+faz9nzxTSfeDE7m3We3sCqx4p+hTf/xEO9/sJOrV5VkZlnS/7lVbNx0vsKPI9xKd24OL01KZ8T0N2nj9HCnJRG0QlVRIyviFObmOPj4oCssRFIoMLMxVXPBK6xffBi/oa/RPGI133++jEMLtlJn8mKWP2fGuj82gd/TAOTk5JCXd/tdYPnIbvx1j3XM5UgRSRzJA28rQJ9LeJKB2jfeAXri15/lYJ4byhJVwlJtf3oEbWX25gy+beVK/vYT/Jntw59dS1QK29dlSPNdTPori75v2wN6js08wO6QNvwSVHwAyYIeI72ZNOIw+4d15fFbHoHrifsjjDOtAmmw5fbn6DJkt7w8CY/u7fk56h+6vXua0H+CqF2Bl4lffvkfarX2xtd5eVr69F3B118+XnEHqSJcXCwZPizI1MUA8tkxbQaRdYYQ8+P7bDF/nLFv98LvIZtJlFZ1PHtO0Zs7PaMCii0IZaiRAWvp5ESXb74ydTFAd5U8j7b0adEUZe04fu80kpxXtjF3RGNUFOBnc+TGqpmZEeSqw41WFEWQJ60upHE4Qke/UDmok4ix8iBIdbF4DRkKSwXyuFhWH9HRsX1pD171XD6TwVXPBvje8s6R0yDQmuMbEuFte9Cms2ZDFi3eqYtdibVUwZ60yN3BmiM6Hm9zc//6xDP8EO7Je29k8/zk8rwaCd+BDQj48iRL4hvxrm/FJaxOf+ddsUajY/HfkRV2jKrg6LEUGgQ6VY2A1Uaz73AhLceNZOyAAhYN7MKAr9w4OjmkQnZfMmiXLZMYNVpBv/5KRr0qntEKxlUjA7bKkNelYe7PjBn9Bxd27kI/bBGfms/kpVG2uHGBi/7v0bp4VU9PCWen48Yri1ktWjS8zNGjeehDrdGeSEHfoBYqbgas9+i+nOmuwcG/RLhmxLP9hDWPf+gIgEEPhkIdhbflkN5gQJOYVfRFbionY21oFKC6dSWlA761c9gbWQBtLIs3zGHF1ASajuuOV2FYuV+O5OhCUK00wsK14Ksqe4Nyeu3Vpvz865Ebd7EWFgrmzOrB0CGNK+wYVcHPv4Qzd94JUxejWCGFege8fR2Ry1X0f74NH/52FKiYgL1OJoMBA/T0768RjaGESlFNA1ZPwbn/iAuLpcC8Lh6dGqDMM6A7t5v4qDzsujyPn1/RSVebcIizO0+Qbx2ERyMd6QciyC0AmaRAYeuCfXArvBq6UP4J7e6HgqBXvuPL0CMkjJtCiL89ch6n0b5tHNO+SteO9Yxy1FLJLAhpbs3iw8loXvMl6WgBLiGOXCq5jmSGl3/JejkN//0QRnj7duxqW/RWcfO1xSImhaM54Hv99lSXyb8rkyhQuxZ9mZFLWqE5zs631VvLzHGwM3AlVY0OS+QYSFsfxqZ6oczylSD6Pl6P3BIXRx2HkvKAigvYb7/phEySMePHcMDArz93q3HhWuUoAmnVtJA/z+VAqCNylQV16tU32uFEq2OhslS/Rk66BKLG9WPV78nYdXyGgDZ2pEx7hfXzU7Bv/wR2p6byb/+PiL1S1JpHUac5zqmnyQkIwTWwJfaxc9m9TYlvn6eo66chbkJX5gz7nbSHbW90V2a4B7ehpb99cYhb4tPuafp2rIeNsQ5ZKolGLV0pPJVEjLaQw7FyQgLv9eDWwOWV25lwugF/z22EV/E7xapLEP2sz/H5B9HEa4CCLDZ8sosDFvYozYuv1zR6tEgolLcXQUIhB22hvmha88w4flhpzVsjne7/Sk8moVJS7vmB78c3X3XkpRFB9HrKnxdHBFf4/oXbWfPURx/gsHoK/+7fxrw9brw3rv2N745/7wNWrFhFfv6DtVG4G9EYSjC2ahawOq7MHM3mC8/y5OT+uHvYYe7elEafT6NZo0IMkgOuwR3xcFjDmlGLuKoDkKGyccLMqqipjLmNNZKNC7autXBo0Y9OS2ZR7/QHrJ0RyT16kNQI5iG1aRibTHhaCsdxIeSuN34GkjfsZOQSJ6b/3YrQklcCdr5MW92DHqkHeDLkd9r23MqmgNaMDQbJpagxmcxWiaWskNyc2+uRC1EXgJWNChkF7J4aie2Y5gQ9yA2oQUuuWoa1rZhTriaQ+w5mzh/v0tzRnyHffEa/OjfrlKZO/5H3J0zE3aMug4cMZ+XK1RUatiJoBWOpXlXE2tOcWBCG8+g/sCl5aSD3J7AvgB4kZ+pN+438McNZ8WUAwz5tce99WobQ+Jm6hK3ZwNVxDXEyTl1xlSC5u9PcLZywDZexcPfHUVbayFcGktdv54UFNnz1eyjNS2mAbdmwIVNWNGTKjSWFrHohG6+goipiydEeb1s1Fy/roX6JX5Q2h6RUJXW8rZClRDFnVwG2Obt4+6/iI2enkFhwjVWfb+esjRMDP3uM1rffBd/YVzaJaVb4+91tBaEyHTmazOHDD59GWddyuJJza2O/2rVrs23LBqysrFixchUzfv6FES+9Qps2rdFoOqLRDAPuv9/s7UTVsVDRqlnAXuJasgyljcWNRfpLBzg87hV2JT5F30Wf4QbIrFvTYdHnpHV7mQ1Bm+l4z51KWDjYQ841Cmra0KS6HC5cNqfu9ROD0pWWwYVMmp3I09+GIOfOgL26Zy8j/mfOJ3+1JOR6uGoz2H/YjLat79LdSZPKgeMquvxYPK+uyp22zfL5/UgOuo72N59vZ6VxOsWVp1opkGoF8dfeW1uw6qIPcGhpPH0+fYLX3Yurr+9Sda87f5ljhbX5oGkNviKqRnbsvEBo64UPvR+ZTIfBMAO4OZKIlZUVAC4uLox6dSQjX3mZlStXM3DwUHS6LZiZ/UpU1AYCAwMA0ORAdh7oAbk5ON7nsxgRtEJFqV4Bq6yHs5+Ok6fPoB/YHAmQPEKp19yVPYrW+PiYk1e8quQ7jKfnneGPF18mvG8LbLrfbacaMs4moKj3Ig7V66dRppwdR/lN3YrJT11foiQ01In4jXKCm935YnWxJxn9eS6j/uxBW/uby9UHTrE4MoS2rQF9DsveXsfGkB7MGV4Unrn7Itji0pS/21/v82pJn+F+fDUtkqi32tBIAUV3xueI6RjEb25ldNotUz47Z55BO7QHPe3KXlswrpXL+6LTVdTVqR5455YlDRo1Qa/Xs2fPXv5dtpzlK1bi6uLKxx99SNLlvpw7H0xg4M2+y4l7JFZGyjAAZgF63uz9YGUTQSs8rOoVKXI/mr73PMfe/oFTIxfR5PpzGpnslnEWDMUPU807TqbfRwNZ+M5BWo8t/h63fti0kb/x3zp7QhY9jQXVk15vuKP/Znbkad76MIWQNUrQG9BrDeiR4dHCDf+mVrS2AfINGAwGdHpAn80f7+0j3vcx4v89zPTr+1ZfY/sf56g9rV3RAkMBcScusjItiRnD7ZGfi+Tdb3MY+eMTBN64mZTh9OzjfL12JeOnebPk/dpYxEUx8XeJD+Y1oNZdnvwbsjXk6jRkZRrg+h2sQY9Ob0BbfALXZ6ez4uvtTEtvxvzvPO4+BrJQaczMjHsaSUhMxK9+Q5o2CWZA/37s3bUdf39/ACZ9Iud87K0XbH5P6hn/ZMUdv8oFrS6WbX9s42xxlZtM6UOXEd3wF5U5VU71ClgkrHr/yFDFD+z5+B2uhgRjY5ZL1lkfGj/ZAH3CIaJ27SIxpzMNPNthb6nA6aW59Dk3mQwZaOL2EfXfBQouruS/6fEochNIjcjBb8FKWrazMvWLewD5/Df/IKuyXGliOMukz5KxBHS5uZyLySSraQAdXLWE/3GamJR85q28whc9/Rgz2Jy6hjT++eYC+tYOXFx8lJ1+9VDVdsb27AU2Jt52GH8fOjYsTkW5E28u7Ivif+eY9H4SCgt7Bs59hs51b/t0S3YMmtcPt9lHmPTOGWQqK/r91pun/EpJV00Ki7+PJvx8Ou7tzTn0/Q4+bVmP0UNVbP3+DEn+7uSv283HZ1Ro8iR8OnZhyzdOiOk8Hw2zZ/5Cp44dqVfP36TlqCpBq96zmN/2XsPXwwKZLp5th7PoMKJb5RxcuC8ygza/pj15rJZmzprNTz//ypmIk+XeJjMzHzs7M2Syh61yFW73+tjNpKapWfrPs6YuilFcH2ji5PGXTV2UhzLpEzkHDkps21JY6cc2GLgRtGfPyiopaPUkn4/Hys8XG0AT9hmjdg9k3vsNjNSX37gOH04itPVCcrLexcqq4vqzVxXVrJuOcN3Q4WtwdJlB+w6LKCwsdfh8QRCMyDTdeyTcisMVtBzfeJmAXvWrZbg+CkTAGkltTxVduimIiCjf3eW5c1Ykp5TviaJGo+OvxZEYDLD/v0scPVr2RPPC/TkTdZro6DOmLoZQDZisH632BBsu+dO7vojXqkoErJHodJCULCO4qZKBg8oOWm/vQTg5rivXvlUqOb17+aNUSjRp4krTpq4VUWShBF+fRHx8atYA/4JxVXbQak9v4qLfUwRUs5Y0jxKT/Wq0iWHEbD+JWmOO1WOdqd/CAznZpK9bQUa9IQTc7V2TE0fCpt2kpmtAkiO3ccO13RN4eJkDajIPbCH+VCqFJVrVyhyb0qC7E2mb95J+RXOzHbHMEpeeg/Guc/crQO2l3fw2dzOJjh14+bXu+JTzMYFKBR9+oMO7roHPJisIbqqkfz89n0zS0ajRnY+9FQoVSqUHUL5nSatW9CMx8Rq1a1ujVIor2IpmZmZApRJV78L9q5zGUFoi1l/E9+mA6tZS9ZFisjtYhVcLPHOWseXfa3g090COjpzDK9k/8Wti4u9xYrP2wdMnjvCv9qLq3hMPiz1sbNeVnQfUgCX2oQ3I/v1z4h0G0eylF2k2rBe2CcfIsPCnjk8sh785iu3QF2k2YiC+LlEknLhHoBWcZMnf0bi1bYZ+1Rhe+Cm69MnC76FdOwPbthSye2chGVfKf0dbFkmSUbeunQhXQagqCvJJOHeV5Nzi7jP3cUeblJREQUFB+Y+ljWJ9gje9G4h4rcpMWEUsobI0R7K2wUwCkGPdoj8+5anvsLNBpbDColZtXPuMo2nD05xZG1E0lrDMEqWlDJlciVylQm7lhPeLQ3BTAdZWKCUZkkKF3NwC2x4TaNX5Hs89zYIZPP5Vnunan3eeb46Z/MHDzFhBKwiCEegyWfv1GtrV/x/N+u5g8amizvX6tERmvbWU5m1XMfGf1OJ1r7F9/iGm/e80a9ac5L1eC+n7w0Uyi3cly7xI2sY/UV+bQ+OO21nyz2686q7Dt956xi+4Sj4wf8FCzK3sGDb8RdauXV922EoeDP1oVPEgLkJVVfWewd42aERZtNFrOBddF58nAku8GD2FqbGkR0eTvOonjp9U3ZzQTJdNzrkY0vbM4tBqNcoyur9KgP5KGAuOBfPxSP+Hbq13t6C9fFkErSBUGXJ7eo9/jBBJQ8Dg9gwOKjq7SC5evPZZAKEtm/LpQFfAQPKiHczVNuLtd0IY+24HFv7bCutf1/HehuIJCRw8eXlELaRsRz5Y2p7ky+1YsvhpLGROTBu5nLbPGcjJlRgxfBitWoUydfoM3D3q3jtsJQfq1LGvgidwoaTqe/2TH0fslOFsmZtOk2XbaXvLlC96CpLOkREjR3MmkfzQEt8qvMKV48eQXz2P2rYcXYB1CWxfuJidO//ltwktCPulO/Zlb1Wm60G7b5+MzyYr+OprCWsbiIiQlfqMVhCEyicr/nP7wptdzw0kxmRw6GoahVhhBkgufjzbfjNvrblMwZO+mJXcGSWf0QYxqvl+/th9haMrz/Peuy68PmY0r48ZTXJyMsuWr2TSZ5/z9LP9sLW1xdfHG2dn56KjGiAmJoj69ZtW637wZ86km7oIRlV9A9bcB99xH+Ee0YODq6IIDW1bYtptBdZNuhHQ2xJ6NiMzpcTLNK9Lnf4DqafqzLVkm7LvluV16PrOj3R+2peuz2zkaEF3OpuVtVH5XQ/atWtlfPJZ2Y2hBEGoSiSavfEUf2TYU3JeJ4NBhoWV8p7nl/R0ifhroMmSsLS0vhHAGo2GI0eO8d+Bg8TGxuHq4oKvny+hIc2xtr45fpmlpT2NG7lX64ANbVHU4kulqpltSUwasIYbf90nfdF2BsmLoJ++Jb7jG2xtv5Unezrd+YZWeGAnbSZqb1vqOxVvByC5YFu7/IeUu/sSEKTAx0g/sd69DfTuffOOVgStIFQPcjc32rnd/Fqfep5Vh215bqE7pXU6SEuD76fI+d//ziPTOtPnY3sek7mwdOlSUlNSWbtuPY0aNeS5Af2YOuVb3MWsAtWWCbvpHOLM7nNoz+4h8uATBLdyRxO5jUux6aQf+I+rbTvhUNpgszlxJKw9wNWMy8SuP43Hs73p+tNOFrzUn00fvU9Dv1gS4rJJX/0rYcmWUJhB0sbL+M7z58I/YWRdTSV23Uk8+gZjVcYDDN35BYwaF4b3U21wzkim3cSx+BRfaBkMBqNcOd5edSyCVnhU6C7sYtGmaNQo8e4whJ6BFVhVZHQGrp44x9ItCew+oCZg6rNMbHnr6VVbmM13z0UxdAfY216mSbCOgd/2Y+zjMqZOUZKbq6Z588f45usvRKjWECYLWIVXKM0WRtCsxDKLhk/TM/zpe29o7YP3uOWMG1diWZdpjEm4+WXd86/fus312a/eW8m498pfRrnfEL6b1oLLhc741nO7JZD37NnL4KEvMPb10Tw3oB9+fn7l2qc6FjLqglcZNSIiaIVHy1U2zP+dPanWKOVeePVSlr1JlSJDaW2Bp48zwZfjCFt9jiNtmtHSQUZaGnwzUyI+24KcSBc++URHp1AZx3eeY+/y83Rs1oTx497h/ffGlX0YoVqp0s9g9QVqtNpbw0QmV6IwV91XS+MHp8LJtzFOpXzHYDCQmprKxYuXaPd4Z9zd3RjQv1+ZYZt5RCKqtr7MgL1OBK3wKNBFLuDPqAAGT3yF3k1cquXYutZ+njzp58mT/YOI/vEfer5kRnf/Jvw5W46HI7haK/nppBPPWQO40rqzH22+WMygcdYcmO1XIY0nharFZAG78I9TJCRcu8ca+Vw7fYLM7NsCVuWK82O+WFRi+/S8vDwuXjpKPf+bkzrHxcXTvHkzfv3lR37+aTp79+5j8ZJ/aNmmPWZmZqSn1yYu7legadEGahnrFsuIPCKRnArJQXqGPV7+MoigrVxJSX5k51iauhiPCD0ZaeZ4We1gQtdZTH99Eas+bY+DqYv1gNLSJObGBHJh7SmW+zRh9iwt/Tz1BPc3IN1y3lLQ6BkfrLqdYvMPfgy0udseherKZAG7dWscCYn3CliAUsbYzQV2xBmjSHeVl5dPevp54uPP3ViWmZmFSlVUjSVJEi1bhnL1aibJySmsWbsOSOLkyU3k5wdibm4OlgZ6vWKgmR1E9NbT9QFnChdB+2CSkijXEHUFBTDxIzmr1oxnxAv7jV8wAZBw7TCGqR3G8M35xbzQawI/9tnNZ01MX8Emk5XSDtNAifYXhRyesZ5J5wL4dlID/poqZ+YsOZ61VTQxU9Pz70KGhEho9pa+f8nODKu8XC5fMYBN9W0NLJTOZO/gRX+W8ay1ynnllq927drNhIkfs2rVGv5duoyNmzbTvHkzBvTvy7w5M2kW4sEzz2gxN9ffsp25mwHHCrj7FkFbfmo11PFWcSZCg/895uw+eVLG0OEK0tNlbFpfSLduLUpZS0vysQvsPJmLzM2NJ55wxeWWT5GepLAYtsUpafKEL8Eu4qR5P1R+A5k0fAk/xGrB1AErt8bNWU/0NS2U6ISjPZuF3sur6OSpy2LVohi2XnRi90IVdb0MRXes3ik0H+ZO2wb3/rCrT6UTZ+9AffE+qZHEQCAPIezQYX7+9X906NCemKjTbNuykVGvjsTFxeWu2zi2N9D8vucV1nI14SrnkzXob/vO7SNDBTXR0c+EQzBmR21gwdoYtGWvWmkKC0Grk5GTU/rPxGCAqdPkhLZSUr++gVMnNHTrVspFSkE6C0au5pMwJS261SUg+wyvPrOVlReKfyv6XDZ/soYPD1jz5HN+IlwfiJZsWSPa3f+HpOLJ7Rj4qi8Xlp3kZG7RIu3leL5fYKDX8/ZcSYP3PnRhemQ95DkSH04vJPJ0IYO6JzL924uEftOW7tdHitMb0OsN6Eq8rfLjopkwOZHmk1rSXTyNqJFMXwdTTQUHB5GalHjPMC2VLpO13+3hu98vom4cyPjPOzI4SEKflsicLw8yN1xJ9zfb8PVAV0BP4vZTLDtZgFxlIDXsHFvUfsyY14o2t7WIaNfOwOqxq/E+kE1E0hCT3NHqksNZPuUjJiu/Y3Dv+tXizZWYCC+8qOTIERmzZ2l5YfjtlzDX6Qj/Zh1fG9oS/lod7AD6t2fqpSW0H32cJmubop+zno/SmrNtsqdosHI/9Cn89XJf/rToSWdvFVZNRjGqzs1r/zGvv0mrVqE82+cZbGwq80GlRN1hvdngeZLfJu9imZUCpY0z7cc/zvof5AycJcfT08DceX1o53aM2as2M+4DOcgsaD6pPx+0sEQC1OGn+WZJDv4tdGyYtIdIWxnoCslUqwiZMYQZbayrxWdFuH/i9/qAHB0dH2zD4jFOt/8RS8odY5xe5cQXtsVjnII++TTj5un55a9QXCVgdBCPvfg7w9534egcv6KT/A06wvdm4uCcQYu31cz7yqzSq47lbiE817k+X9/leVNVs/hvidfHKmjc2MCJYxq8ve+xsiaFpcuv0GC8V4mfu0SdznVwn3SGNeftiZ6aQZ1hV5gxPg7zx5vzztMOVKeenCYj1eL5n/+lWXw+zv5+uNzWPmHm7Dns27+fN958h44dH+e5Af15unevSgpbOXU6PcbnnW4OENHrsaJgnT1Ly/OD9EiSDGjG151L34NlSGO+CGl8z6OsXXsWR0cL2rb1rPiXIJiMCFgTKXuMU9AnXiH6cD4nC6GLGSBZ0rOPF6PfOcvBAj+6lzx7665yIMuT0V0ymftfKqFTPE3zjFYmo6qP3JaZCWNeV7BsucTkz3W8/57uttadpdCrSbsiYW11awcSyd4cW0MeyYcvcqjQnfGjmvNcQQQDOq7iS/cX+KJF1X0KExGRxq5dF0xdjBIURET/h5NT4S2fjdru7qxZtRxHR0fWrF3HX4uXMHrMGzz2WFMKta0x6F8Gbr060sXJ2FtooGP9hy/V9WCdOev2YH34fQN8PGk30388TKFGz8Lfe/H8oIYVs2PB5ETAVmGKZiHM/z0Pv1sHOUVmocTqthDTp13kvI0nk4NT+WL+JS7qPPGVi8ZQt9u5U8YLLyqxtjYQdqCQxx4r589AaYevp44dSXnoUd5ovKBPV3PF3IGAWno2O9rj5yghVwUwpO0u5h7NgxZlTNdkIjKZDL0BOnX529RFuYUkzUKvT75lmZVV0c/Q1taWoUMGM/C5AaxYuYohw0ag0+3D3PwfoqLWEhgYcGMbQ7aMJM3Dvb+NHazXhR1KQq3WIgNmzzkmArYGEQFblcmtad6uxHiR+lw2rk7Ca0BvWtzWBkT9XwpSSCAuzVIIGH+J/dfAt0RHQhG0MHWaxOK/5bw+Rs9332qxsLiPjeXOvDDWl98XnCFmTEsC5QBajq+MRz6iA/1badhbeJqzORDqKKGysKV+/apbQTz29eaMfb25qYtRigl3LPH2rU9hoZaNGzezdNly1qxdR0BAfaZO+Y7Y2H5ERNYhMLDwx***NkrsOSJxXAt5KQYGPmXgfi5zKitYr/tpRhf69FuBi4sFK5f3M85BBJMQAVsN6K+msG5ZHLt3XyI14AmWf1j7tmd74xT07wAAIABJREFUOo6E6Wg02gyFe21aOB5jf7iWYV3v/PU+ykG7eYucjesLS28hXCYZXsN68v/27js6ivJr4Ph3SzabRnonkARIQo+UEEAB6aAUC6IgCKKC2BXrz/7aQLAXFFCxUQVEqvQSOtI7pFJSSd2Uze7s+0cSSEJJgCwp3M85OSeZfWbmbnZ27jxlnpmdv4lJL2whsoMThdHnOKCOZP6HDXHSKbz5+klenXiEwJ65bPDtwIQu8vWqCnHx8YQ0bUGnjpE8MOR+3n/vberXL+qrfOvtS+d8atpPoYk/zDMqPNSu8vu52Ym1RNOmHhw7/MSVCyiFJMVmkWPnRKCv7vKzXBnzSYg1YHJ3Jsj9ysed2WAgLlHBvaETzhUdnuY8YuIhIMhOEsV1qrkdROICtY0OD38XmrdypnDfCZbszi97u445na2pjkTWV4GtN51uK2RnVNpVb5W50oPfy9/eM/PX34iJqdzEHsr5I/y7PYaU49uIis655vdpbfPmXG9yLaGn3eO9mP5OAOfnbOLNhVoeeiGEIB2AmuDh/fh9gg9uTZrzyfthNKiN8/3VQL/+MoOE2JNEbVrPc88+fSG5Xo02RKFPJVtaU1Lg5Vc0BDXS8c8SNT9MNXH4YCHDh11jcjUm8ccbi4hs/D3thqxlWlT+JbfVKSnxfP3oH4Q0+o23t5pLvVLI8udm0DDkN0Z8XtwvruSw7ovVPPHiVn5dFsP8z5fRo/sSpu41llrPxOHfVtD//rVMXxbLom/XMfqpXWzLKL/jfLZ+/jf9x2xn/uJ9vPHwYt5bbbgkvlIrcPjLBUSMO0xKcaHcXQd44+HfaBQ0nT6Pr+ed9zby2kvrmLQwlexr+DfdSuTCpDZwdKVTf1c69Q9j5LGd9B20Aue1g3jYrygZKikJbDuaSeHkrazBQmq2lmPbzpCieONbwQmiohrtmMfGYlYU2rVtc2Gu5cArDLdVuzVl8JfbGVzV77+KODtXXKYy1O4BvLboUfrN3cnPE3eR3KshXTp74q0DW09Xml7jnVvi6kY8PPzaV9JDReP8q7zGqvNm+NstWPf7aZRHuvB450tPr2rPBjz5pD8//LmDDduzUTq6FNVyjClsWJvKWU07xj3VEFA4/Nlino/pyOZvgygaL92WETMX0n7UFsJ3dCNSBwXbohjxsYX3o/pzV3GXUMaKlQx+6RjzpoXiqQawkLhgFY/+48Xc5R1paQvK+RM80Xc5M4Lv5fHgS9+w+eRe3vomiZzGYReW2bdrybtPJDF/pYHHvuzGEHvAlM3Kd5cxaO1tzPwyhACpspUh/45aRtukKfc2jGb63MwLy3K3JOM17k5efKYtzz7TjreebYz3/jNszav8dq9Uow1oEMThA3uZ+PGHRMfE0KFTF9pFdOSTiZ9y6lQ0ZrP5kh9FsWA2K1b9URTlsvu+0k+VU+tp/eAdfPFRO4Z0cecqrXKihqmyGutlFV30Xn0kvQq9TsWhnYmUfEWVpETOKU4XazzmTJb8fYY8rbpUk7AKv/7BtIyOYcVRBTCxZsZBsns3p1ep8RYu3ZvTbs9//F4yAYopie8mxtP+6dtoWdy3pHYL5omemUz56jQF5cMzZzBzSiod73e/tAZWfPvDhbendaLPe70ZeHQNz/+RfZUa8a1JTgvVpOI5TiF35w5Gv5POvT/0ZmhA8XK1DfZ2Fs6n5ReXMrN7u4nm4+xxKHmeXmR9wo1RRO01c2/na2unLEm0y5erGP+MDWmp59FoNHTvfifdu9/Jt19/yeLFSxg24hFe/99bl9lCKPDQNe3z+kQBqypZ1hnIIMeQA9c03KWSNGr5ItUCKSnwyUQNn3+pISjw5vWxXkpNqzv8iTuYyCFjGBE6yN15HodIT3RbiouoVNjbqYlZeYLdxobcUXpQY8k9fuYcDh/Lp/4Ql7LHn86DMP8klm428kKQHtPhEyyN8+XF7qVvMNbQqrMvhldOstvYgE4Xtm8hYc52dnXuwLNnFvNeZd6OxoUHH3Dj/34+QuywCIKla+QCOS9Uh8rMcYpC3OojLFxrokmy5WKCNaZy6JQ9EU8UN4CZ09ma5EhX/1JnCUc/OjTNZvHWLMydXa/p0V/p6fDZ5xq++lqDuzs4OBS1q2ZmZrLo78XMmj2XqC1b6BDRnjtu78ztnTthb39xnreCAjNGo6dVJwHIy8/DbOqIo+OrlSqfk6Oh/wBwdHDkMpc1lWPIYOOyOA5nO9FzZDCNS39zzBms/S2GGDtX2jRVc2JXGtn+gTzSx7XMF8wcE8uv/2ZiV78eLrlZxKYpoFFhY6PFI6Q+PTq54IhC/PpDLDtaWC5SNQ26tqBPvTPMmBZNglsDxoxrVNT/q+SxZ9FxdqYoeEQ25d7WRSdS87kE5i5Lx+zvxz19PcpeWhgSmflrLr3HBlfYjVDblW4K9vOzYLGo+P23QjpGVt+gPttwX5ptTWR3moUIX4V9ey00DddASYJVuzD+r8fpm6WncankmrY2ln1+AfwvRA1YUCxQaFTKHSsWLIqZhJgsQI9hfzLR/h6EOZYphE0jF/zOJHAoEzoVd2soiceYvMGbCd/Vo3ByZd+NCrcWXngfOMvOfAiumXemVQtJsBUoiF3NT79sING9I8Me7U9oVRw8xXOc/jprP/uHdqCVQ6k5Tt9zKU6IakKGhHPXjH2oFSMKetTmPLZ+toWo9t2Y3afoW6ecjWNTqj3DS3+SGidaNdPz0apoEl5sS2AlTqDlE+tnU4qmDbS1i+PugYNJSkqme/dujBwxnHlz/rzJU9ZdTuVnEMjMrLhMhRxciAzYw1PdN7LB8TH+eMDuQv9K5vItjB4fx91LHmdMKxUFf/5Lt7fjcdw3kKHuJS0S+Sz/aBlPrm3EskOt6XJoA+2ez+StowMZZEph7quLiJzegZXTm7A3KhWX/rfRIWkXA54x8t7KToQe2c/szQmkZWbg09mHuI9X8IjxQdZNcOXo16uY5t+Dbx7J4eP7/mbKxCG8FHSGt8cfpdNPPWg+bynjfr6DX0aXHFsFRH2+mteXBNHu8bqbYC/Xxzp4kIKjsy3qap4MReXuQzu/Q+zcbebJfjnszrSnfUjZoUJqp3o0Lv01M5zm08mJdHlrGJ1tARxo1EDL8T2J5OByYYYxc/QRFmw3k9uyEFBIS8ql0NUej3Kfs8pVj7Mln+RUBTzVoOSy9NNomrzQl2ANHLuG96PxssOt4Czn0ixccpP+LUwS7NUYNvDF5M24dm6EZdYL9NiUzo7Zw/G74RPS5ec4HfRJF1qVGoijadyaOetcmD51I8/O0mILuLW9nb9f8S0avJB7jmkfxqGotXwxO5mJw7zQAtnbD7E825MOmjg+nOrDtPH+V4zkSolVW3x**P0eNq1a8uggQNqQFK9MZYbrLBonO3o2deTed/t4/h9kUX3wiqZzF9vJCxARz3HorY7Z49A+rY4yrc/nef+l93RAEr8MdZluxFQzxZHNaicbXHUqLGxAa2TJ0MnhPJ1xAGWTw5j4JgIPHwcUHbZYKO14O7vQovACJ5JUePpHYQa6BR7hJ05ajAlM+sPA6Hz7VHr7RjWw0T/6QmMbLObOc4t+J+rGn1vb87cv5fdw7sRoYPMjfvZ6BFAaB399l9t8FLeNYxLsCqtBx1aK0zafR5T1zSibX0YoUm6cnklm4UvrufAAwOZPaxe8cWdjp4jQnF8cDOvLPDh63tdsMSf4r03zmDXSI1eX/QBGwsV0KixKbdJtY0ajUWhsPgW4oxV21ng344fwtRwjb2pKhsNNiqwSCdsGXX0K1Y1zJneDPq/twlzVaN0zWVrt60cKhyOX5XMH3BxjtOr0QU0ZPyHDS//or0vY6fey9hyi506tObLP1tfdbsVJdYSX3w+5eoB1gIlifWJcVoWzC8kIOB6t6TCtX9b7pmylm82tOWb7jYY/zvCiZBQwjRbLhZT67lrfAiTX93Nhqd6093ezH9z0gm5zx3NR5fZrMnAlj9PcbZNEzrUU+GlLWomKXOuUuvx9i76VTl/hp/3ePHmJFc0yhkK8nOIT1CggQZXFxsSozI4YE7Gwd8JHaD2csQtPoY9GdBOG8uMHe48eq/Cqt9r0jOPblx13cd6fbS0j/Ageu05Uv5LhxYR6Nh3+aJKDsteXc6fTXsy53kfSrf0OvftwT9TN/HGpHm0+USPh78Po99pi+0TxzH4OQIq6jnaoMorJKfcBaZiKKRAZYOTE5Adz+RZtjw11YvreY6RJbeQXJUN9Zyl9lqaJNir0PiFUTJI3ZKTh1372wkvfxl4DVasPMWjY5YRGurO3wvvo169mz/TT2UTa11SMm7MZIJW4Tq+/cbEsIeu71Jbpa/P+Ecd6PnNEf7XNYSd/xTS7VkHVn5RphT6zm0Y4zWbr+Z2ouvgcyw2NOA572g+L1XKYkjl7692cCQrldWL82n9oPclzXiXMGeyZuZB1q07wozXfNn+TSDDRzow9K31hD7uReKSNJy9HTAYTOi8Sj5UFWqLCUOOgX8XJhM+JgKPjJTrev81kdFYNCq4diTWEip82/vg8/U5lm7X4nu3HtXl8quSw9IJS5hRvyu/lkuuRWxo9mB3Fj1Y6kkDuccZeaYerVrqARVugc7US87irAlCSg3IMJ01kGxfjyBvFUnz97IuS0fO66v5HQAL2fuyKIg7wbsvpeMU1pT3xvpfUgu+sK3TWaT4uNJY+l/LqMOn1apkYNu8eHq8/kzxfWXXZ/SYZSQmGjiXaGDUo0tZMP/eqguxArdiYi1vxjQTK/9VM2q0liVLFL771oRL8XPlYmLgw4+1TP+xolqditBRbbj96x1MXW6iwDmUD5wKWFm+mMad0U/W56vP9rA8z4zzvV1wyowuuyUHDwY9G8FAPbw8fh+DWi3m1Wbj+HXwVeoQGmd6vdCH7gNd6TXoFP8VNKL7hKFs6p9ItKJw7hs1fcfWx2ejPcbcwqJacH4BOWp7PFP2MmnaCQoWHQOjgcMnLIwe78yOH6/+pJeaLC5ORdQWFcnJ6kol1pLXqiP5ms9lctbNGd/iv21a+dHasJGpUU2Y9JyaSyuw+Wx8dynfuNzOrBd9LyRX09HT7HTxp6PP5WuLxv1n2FMvkK/bFGVTXfv6tEk/wK4zCt1K3fOaeSiFpPBGROpVeI8cSNTI0ltRODbxHHPXNOHdKW0v9NOXnuKidNlTO5Io7BBJeA14jG9NUqOv8WoGheS1PxPV8iWebnFjR0/HSD8c7G3QalU89WSbKorv6tLTi6aTCwzW8cefGj6bYuL4USNjHr21kisUnVRff83Mti2F7N2nolW4jnXrVBiN0PcuG2b8pGH16qs0cVlAsYDaM4Rnhhj59vkzhD3oibbopQtN0RZL0UhVz8FtecCwm2e3uvFQC/WFbVgAlLLjmdUOelz0VHqQs8bXhdCWbgRpATR4NfPFe/duVoZ04a1eelr1aYDmRBo5gPHoedI6B9G9bUeW/TeMf1cMZeUv4YSHteD7z2v3xPJPjTfx0QfmSt/HamsLixcW0rr1zR5BbGTt9/v4r/T1m70vEU0zOWHjSZtLGrMUon9ZwTtJ4cx4s/TzhQvZOvMQ+4rDV84d5Zm+y5gZU9IiY2TznzF4Pt6GO0ruefUMYVS/bP6aXWp2NyWHJUvO021EKD43mgUy4vlunoUR48o/QlPcYqfYa5e58w/+ON+T5+5vgCY/lui0AIL9r+9Gr7mz72HZslMEBTnTsqVXFUdaltRYr6xNGwu7dxby6mtaeva2oUULCwkJRYl11Bgbok8Y0ZW/lsrJYOOS06w5pqd/jxZ0fLINA9QeDPEp4OiKaPYmZaNdGc8evYp/o2I55taInsP9GT+uCeqmYfhkprHi3ySSzqhZsSKW1OOnic3KYu7EbZxyNHEqKo7UYX2YOrB4x5nnWbfiHKeTTKxanUrrfh7Ui9nH2JfOEHhXfTzSDNz+RjuCNBZyk9LYsvQISxPC+HVqGP5q4PZI3vlnPZNn2VJ/h4lR77XAX6sGbdH2zXoVKrUavW3tvsbu0AE6dLi2iUQGDLDmSBwLiqKglAmpgMN/rObVfb4ssQNFsWBSLKB2IqKNK+He/jgB+QpYFAsKoJw9yEvvZ9JobCZzvtpxYdu5cXHMXOLIF+8WHa+WrAz2Rh0nZVcPHglSc3LOWj46F87Xk90v3p6ntuOeD7qyeMhapvQcxKsRNsTM38DPNpH89IDDFWtZ2dmFmLMLyLBwodZtMVtQzBZMlqJ4so8c48MJO0gd159JHeXkUp7KYsqv2zO834Cc7ZMYMPR7ztRzQYeFwvwmvLBmDuMC1JjNZjSaKyfagIY6Pv7IxMPDb+6wuvKJ9X9vSGLNzAQXd1v27DISHl72cH/nXTXvf6ClZG4ae3sLr79q5s3/WWH2pxtmJi06jbOF9gQ3caRoXhEzydGZmL1c8HUsf6o0kRKdjdnHFR/7y2xOVK3008yYvJ+le7Kw+HnRqr4NoGBITOdYXAFe93Tnh4dNzHx1O39nuDDyrS70O72XP1zDeVR3jHc+O8yuc2qC+rTh28E5PPfUAY5fpsdC27gF333ZgsDiJzrFrvyPb5dkgV6NXXAwY8YE0vAyjW2mM3FM/fY4JwtA5xvE2Gca0+gyw0CM+w4x8a9ETh1M4Vy+Db5hXnQYcBsjnGKZOP0EO+NMeIR40aieQp7WmTsfbEG/UGkbvhxJsNdp/foN3DVgMC++8BxD7r+PVq1alnn9ZidYSaxXdqUEGxsLLcN15OSUbRa2t7dw9JDxBkYbCyGE9MHeEI1GQ0FBAYPuuZ+wZi156+132b//wE2NQfpYK3a5gS1GI4S31ZFzmYf+5OXBI6PlnyfEtUhMzOHhkf/w0cdbKi58i6izZxGDwcj/fVA1H3RuXi5nzuymSeP8C8vi4xNo2rQpkyZ+zKSJH7Nr125mzZ5Lv7sGYsjNJS/PlyNHvwFuL1rBpGLeJ2p2G4r+rN/LzNPdL91XZUkfa+U5OcE/iwpp1uxi7TUvD77/1sTBQyp27lRz6LCKpCTQ64teW7dew5PjT/P9dz7VGLkQtceQoYvYuvUMZqXoe/bG652qOaLqV2dPxwZDIRM/3UZIE1eCg10qXuEqcnPzSEpOJDc34cKytPPnUZSLzb+hoSG0aRPO/gMHWL1mLSpVDrEx/5Gf3w69Xg9aC0PeNDPkhiKRxHq97r67bFO9szM89GDJsqL+VqMRjh9XceCgihdfiuefpUl8jyRYISrD1laDSq0CxYKTk/TJQh1OsCUW/nUfzZp5VMGWRpX5a/36Dbz08qv88ecs5s6bz/r1G+na9Q5GjhjOX/Nm07ylB/36mdDrq6YPVhKr9el00KKFhRYtLGze/CnJKcnArOoOS4haYd6ce3j/g82Ehboz9onbqjucGkFOzzfgvz17mTN3HkPuv4/fZv5MvXr1qnwfkliFELWBq6uez6f0rO4wahQ5TV+n224LJ/N8slWSKkhiFUKI2k5O19fJ2dk6c5ZIYhVCiLpBTts1xLlz8MlEDb/MlMQqhBB1gZy+q1lJjXXyFA2KBb77RhKrEELUBTLRRDUpP0HEffcpBAVaZIIIIYSoIyTB3mRXmnmpcyflwnNLhRBC1H5SV7pJZPCSEELcWuT0bmWSWIUQoi4zErM5mnWHcjGiQmOrw6dZAL0i6kkTsbUoCsyfr5ZJ+IUQok7TERTpQvQPW9jgFMxd7W3Y8MJvdHv3jCRYa8nKhq3b1JVOrMdPLOTsubtuXoDiqg4ddufw4QbVHYYQojZQ2eLkqMbBxQG/5iG8MtKdAwtOSBOxtRzYa8TfH2xsKle+ceNEfLyjrRuUqLTQ0Ha4ueVVdxhCiNomP41FK88T2D1SEqy1BAZeW3m1quzzSkX10mo0aDR1+QMxkbDtJKv352HU29OmR2Pa+2sqXishgXnLEti6x0yv1zozILCK/0cF2excc5rjWTpa9QqipXtd/gxEGeZ0Ujau52yCEftWXWnomkeei4X0lRtITTej84+gUf9QTNuXEr0/FbPeC99ed+Pvp6Xg6DIOn2hM6wEhlWuWNZ8lNcYBj8YlM/LlkL5hOTFH07E41se/V188CnZwfM1+co16HMJ7EhrhV8G2TUSv2cawV/aSMuJeNr5cUXkhbkFms0JWVgG5uYXVHYoVaQmI8Cdn7lrmZPnRthLJFXMG0146gGp4JC/0VHEq1li1ISkG5r26g9gOYfT3j+eJ3uvYkFu1uxA1k/nYHywe9CxHDCE0GtANl8Q5LL73TWLVwTQIiWf3u+vRdG2Fg9oW5w7tKJjzBkeNnfH306Ik7uLIp/9jw9JYKvvsMlPUZ8x/6jfSzSVLHHHtHELmtP8jRncHPl5qtAER+GfOY9UiIw0qTK4AWoJ7dGDiG/WJ/es4R3LlPlghysjNLSSy06/MmnOEFStjeGj43yiKpeIVayO1DfZ2ahyddJU7ERQms+OwBTutmqD7b+f5bvoqDkihsKCAzGwLru0DaJqewsGMOvq/FxeZDrLlsXfIf2gyd9zdHEdXbzz7Psdd7/RAk6GAowM2ekd0Jd1taid09hpsHByK/vRpR/PuIVTiErHYeY4vP4b6yEz+21PqIlHlgI29Hp3DhR2hc7RDZe9AxU+3tRT9WFQEPNiLya2P8+RrpyTBClHaoHv+4sDBFMxmC4piYfHiE7z86trqDsvqlLREpj0xk95PbubRjtN4fN5ZFv6wlxlfrWPovf8y92QGG2bFcDQ9ndU/HSLqnBUSn9qJYd/357FANTmbYojtfhv3+8jsK3WdsncuB/aFEtzLk9Kftt3AR2kRUMkUpVJBJQ8VJXo+Z73/jz5DjRz8cS033g5jJGbzCbbE5LF39UkOpNkzaFJvum9cLn2w4ubYufMco8csRaut2dd0Bw4mo5RqZ8rNM/HZ5zuZ8mmP6gvqJlC7e9G5oYrPUwJYuK4dsT8u5820JjzQ1JMw9VZ+/Ks1K55pSPAkE70ebU7nqq68lmbOYNFWFz75IhTvmn24iCqgJCaSq3HC1vEqH3beCU7O+IEMDUABZ85UtjG4PCPn5sXh/vBjBGQNx7HXDA4n9ibcp2TfeaT9+xM744vqw6YdZ6n4UlJHUNcO/J3QodSyQL7c/7QkWHFzZGcXcOhwKl98VrMT1bvvbyYjo+DC32oVdOpcvxojunnUGjVuXg7o9VoSjmThPSiMh/pq4cEWRQVy029KHEpGBh69byPC8absTlQzdaNGOJuXkXnaDCFXaOi1a0LjMWNpogdIR7PkQ05cz84yV3N4bx72Dt+z06Lg5hXFf7+dpNXLJYOj7HDv/Sjt+xddQebZLGXD8uvZURFJsOKmUQHPPdu+usO4qg4RfvTsMxuDoajhyN3Dgd9+ubuao7KuS6/Q1QQGqln61X/s6RxB68IEFmx34p6uly1c9dQuhDaRquutQh36MJF3/cSmr9Zw21e9cVADmMnZuprMRr3wLa6sXjz0LNd5GCpk/rUZu5c+oXO7ol7V/Aan+P7NGZx+diINtJbyO7rh412OYiFKiYz0Z/OGh2nbJofmzRLZtf0RAgNdqjssKzCRsP0oG06YOLH+KFsOJxO1L5vYHafYlaQibFwPXnI6QP+mU+n85Gk829tybEUch8+lsHZJImereADxRQr7v13CkE/PVkHfmKgV1P60/HEeHVU/sPCh8fz73mS2ff8L8dp2+NnHEr94C+lp+4lesh+DUkDmtr+IPZ5H6tq/OHPWhOX8EU5tjyH3+DYSonOusBMFw44f+Pe7A5jzU4pHGxvJ1zthf/IXVr89j+hV/5AQnUbi6qUkJiuYErZzaP1JTMfWc2jH2UqPUE5NBZXWlrsHalFZTPl1cphecrIBb7+vObT/MZo186jucEoxkpsL9vZlx6V9P/UHvvr6W44c2l9NcVnX2rWx9Ow9G8X0WnWHUilPPf0cySnJzJszq7pDEULUIvv3q2jdRseI4WZpIrYuE9lJ50gvKNW4kTabMa+pmPLjUNzsPQjwtK/G+IQQoo4xFVBYYCrbuqvSoNHruRlzx5RMGPTZFJMkWKtSklgyoRfjN+hp5GNXtMx0nlNxMGrIAuy6vM2Wyf0AMKel4Z99peYNIYSoe/LzTXzwYRSZmQUVF64kU/JJUs/llus+1WIf3BRnp8rdyxMbF4ez8zFcXcwVFwYKCiAmNoyw0KdIO196r8J61P48NHMTgTOnsZrujHskEvek7xkwVs1Pi8aWuQUhWLHQzVy5D1MIIeoCi8VCXFwWuXlVOWuaD3hdutSQY8BQyTpMYqKBvLwU8vLyK1W+oACSkryoVw8yMy8mcUmw1qb2pOPoN2h5eCE/fDSVVv3MXG5smaenBy4uzpeuL4QQdZSdnQ2//TqgusOoQiYOHlTRMrxojI0k2JvEsdk9vNQ4ntVTP8Lscyc1fL4FUeeVfUi01sGekI6BdGmkKfsQgEgPCvaf5mCqGVQqtHpbPBt60amTB54Vzx93iYIz51iz5TyZDp707uOFe+XntxOiVpk8RSO36dxUugb0fHYqK34cint1xyJucTqCIutx4vstbHAKomdwNp/3m8ljC/LxL/0QgBB3IoMymPp+LDY9QxjQxRXj+nV067CYn45cW5eGknSUVz7LpMN9jai/YQU9X41H5vIXdY29vYW2bRRWrVZLghXilqXS4eigxsHFkcBO4Tzb18zsX06RWe4hACpnWxy1Ojz9HfAO8mXIu4OZ3jeFl8bu5JDpGvZnMlOQlU+2RU/7O9xJP5hCxvXOeCdEDRUcDLt2FLJ7Z6EkWCEuJy8f8m6l560rBSScNeIb5ELFN47Z0H5oCIF7jrMkuvIZUu3fnKnTwgnUGNm0KpMeT4ThI2cgUYdJH6wQlxEf34a0tNTqDsP6LCbith5h2r5Etgd2Y9abDbGl4pGTajc9LhSSlXXtuzTHHmdLo258ea+DXOGLOqSAo0uOcaJJCwaEqsk+elIYjz1EAAAOoUlEQVQSrBCXExoyhuQUgIttoDkxCaxYn0qKEdQaDU7eHtzRy4+A4ifLFMTG8NMvcSS612fYo40JdShaP3bVfn5eb8C9YzPG3O2OQzW8nytSaWnYsSmP92/J49ewmvHEeeL0rjzW6FpTpIWMaHv6jPVD5vIXdYdC4s5jTHojCptPmzEgVI19oFxACnHB8eMqtm8v+klKgrS0ot+jolQcP67CMcifoOg9fLBBR9/+vthvXE2n7pvYmgsY4vhicgKaUFcsq1bRY/RBzipgWL+LTzepCW1s4d/nZvHI79mVntP0prBYrjih+YXFSrkiBalMm3IS1yfaM9j12nepDnKjiVzaizpFjU/7pnQPvZhSNTZ6qcEKUeKllzUsWVr2vpHIzhfvRbGY8nB2skHroMfbz5PBL7fk+6m7WXywMxH1HRj0f3cQ5qpC6Wpia7fTHCpsRnPvJnzwrjuuagvdcs/SJSqVwoedsL3Zb+4SRqI3nWRbfB7nVp/kQEQoLT1VlH8IwLaO9clffJrYrGz++mwHMfpC4g+kkN3rbpY8G3DttXFTMt+MWk7ORyOY2Fnu0RF1S/nnvkuCFaKUp540M/nTskNjJ32qYcnS8o09Jo79Hc2xwIa80lSNxsmDsOJXLDmF2LUPINxGjWfTkhuyLOTkaono4o2Ntd9EpegI7hbJP6cjyy3XEtAhnF+Phl9cNOF+zkyoot1qvXlrw6gq2pgQNZskWCsx5eeTn5FR6fIFWVlYTGZyEhMrvY7axgZ7d7mjtirp9Rb0+vLLiq5MS+THxDJp+Fp+TG3BgvWRRDiVLm1k27xMerzeHs/SOdlwlrlxDXnjOXvplxHiFiEJ1kpmDb6P6NVrrnm9KfUDr6n8+P178GzW9Jr3I66fPiiQCW/7cKjnThYeaUvE7SXNyBaS1+4jqmUkL7Uo1fypGFg74zStXomgxXXMfiSEqJ0kwVrJ/bN+x1A0DLVSLBYLSqEJja7yDYhavS0uDRteT3jiOimABQvqgGZ8PSmOLk+to8va3vRzV5G58yB/nA/iufud0eRnEJ1Wj2B/Izt/P0Rar3YMaaAmPzaDtAAX/KX7UYg6xML5wzFsj87j2NbTRHduiEt0nCRYa7FzdcXO9TqGWIoaKyfmNIu3ZpJ2JpalB/y4Z1B3vln3O6PuWc2EoRoWfHqYxHp6ZrxvoTDfjRfW3M1tnyxgyLfZ1HPdz3sWM/khEaybd1t1vxUhRJVS4dYshK92hVxc1CpcEuzNcurfVeSmpd3YRlQqArt2wcnXt2qCEtfEMagBExY+TenxPj2/eIzTxb8//1T3S1d6bRjxr92M6IQQNY0k2JvAbDSy/PkXKcjKvrENqVT0/Xwyze+/r2oCE0IIYTWSYG8CjU7H04cPVHcYQgghbiK5Y0AIIYSwAqnBVoPMhAQ2fTwJpbCwwrIN7uhM+MgRNyEqUVnZR08y/4QrIwa4F3+BFM5tPsrSUwr124fQt5mFo0v28v1WR154vzmB5UcMF+Swd208exPNODb05c6uHvLgcSHqIKnBVgPFZKIwNxdTfn6FPxbztT3UWliXOfEcf326nveXZlLyyRg2bWLcPB33PVyfuIkr+SlaQ6BPAVHr0skuN89v/sG9DOv+D79mutGjXwDuh6Lo13Ul82Nr1AzFQogqIDXYauAaFMQ9v8yo7jDEddD4+PJAdzc+2lS8QMll/pdHcHm4E64aLX3Cs7l3ejKPjNHhqCr3NHJzCl88uY74wSP57UF3NEDAM/346OhPDH/5MF3mtMBLLnmFqDPk6yzEtVKpLk6dWJjMzgM2+PtrABVevnbE7026WFYxMG/cLB6edIw9xxJYt9eOdh1cuNgirKNDpCeGnafZV3GPgRCiFpEabA2we/oMNk+cDICDpwePbdlUwRqixrAUYsjT4GVX/LdahSWv8MJr+37fS8bQAfx6pyPq7MM4603klGs3LjSaUbna4Sb9sELUKZJga4DArl1Ra4rOro4+MolEraJ1xNfDTK6hKGnmZxlRezoA2VgyE/huipZBf3QoaipyasRTj+3gueUJZN4VhDOAks2SlVncOb4X4fJtFKJOkSbiGsC9SWNuGz2K20aPokm/PtUdjrgWWk/6dlNz/JgRMHP0eB6d+zQAQOUSxCcT3Znz+DpWpVko2HEOJgxhapt4PvopCRP5LPt8B0kPDWbmnZlsPC4DnYSoSyTBCnENlPOp/Ls9g5TjZ4iKNgJabn+lM8Hrt***3/uYm9eS/xum5dDaROLOpnKoflueDzzCyKEbmb9mB729v+H2cduYtiYdoymbXXN38/rQGXi2+Jfl5y0V7l8IUXuoLKb8OvmtTk424O33NYf2P0azZh7VG4ySzfmodZyOzkLbMIKgZnYUWoycX7+B1LwGBA/riZsOoIDM7cuJ2ZeJrmV7vMxHSTiUggkVKq0eW4+G+HTqiKdn7Xvm2dq1sfTsPRvFVHMn5h0wSMu6dWpenmAmJQVMZvD1gR9+1ODnZ2HXjquMQirIJTpBwaexI/Y3L2QhRA0mNVgrU+IXs/KeMexJbEDg4AEEOB9gy+hn2JPYkIY9G5D06YPMeX0teQqALc7twjDsT8KjfTM8IgNJ/+FDom160PTuO3Ar3MCq7p1Y8PNR5O7YqteyhYU2bSysW69m4d8aFizQsG69msaNLUS0r+A61NaeYEmuQohSZFiFNZlPsvOJV8l4aA0PDPFDBXDbfdz5pQ3HMhRUrs3x7hZByqJxLG61giGPBKNWOaDzcMRGBVAPnaMWWw9/HLz1ONz/NkP8C5h+95NsjVjF7c3l46tKH31ohuJLl6ee1pKcAvPmmK6+khBCXIHUYK1IOfAne7Y1ofHdxcm1mLrxQJq2K2rmVXn2pe8vw8l+azQbt+VUuE2b9g8QFriXY0tjkCEx1mMwnMVgiKvuMIQQtZgkWCtSTp8hR+WAbck9kpjI2vIt88J8mT5hJen5ACp0nd7kvg982Tf6BY6cqyBtql2xcwFjVpZ1g7/FnU2cSFLS/6o7DCFELSYJ1orUISG4mY+TfLikmVFLvQ598fPS4tqxK676kpIaXEdOZdCgg6wY9SPnC6/S32c8SVqcHrdmwfLhWVGTRiaCgwuqOwwhRC0m52grUjceSedhRvZ/OofM0qOSVKUbjC0UpVMXAj/4lS6Os9i11XThNcrk2gJSpn/OcdfH6DjI1brBCyGEuCEySsaa1J6EfrME9aSPWfNsDH7hvmhzEjgfNIQmzcxkbl9M7LotGHsMpN0dgdhom9BmxjTOv3MSFTmkb/qHhNgsshZ8wdZYPcb4g6Rk92Tw4qdp4FDdb04IIcTVSIK1Nm1DmrwxlSaXfXEs920YW2aJyq0Hvb7uUfRHtxd5KOFFa0cohBDCCqSJWAghhLACSbBCCCGEFUiCFUIIIaxAEqwQQghhBZJghRBCCCuQBCuEEEJYgSRYIYQQwgrq/H2wzVtNx9dHZmWobucSDdUdwjXJOHGCzLS06g5DCFGL1dkE6+xsyx+/DajuMEQpqjJTRNZs/evXJ0tX+x5sL4SoOepsgrW11TLsoebVHYaopVzs7LCxt6u4oBBCXIH0wQohhBBWIAlWCCGEsAJJsEIIIYQVSIIVQgghrEASrBBCCGEFkmCFEEIIK5AEK4QQQliBJFghhBDCCiTBCiGEEFZQZ2dyEqK0o4sWk3X2TKXLJx88iDEnhx3ffV/pdWydnGg94uHrCU8IUQepLKZ8S3UHIYS1/db3LrLPnq10+fzMLCxmE3ZubpVex97Dg4eXL0Fra3s9IQoh6hhJsEIIIYQVSB+sEEIIYQXSBytuOTlJSfw74VUK8/NuaDtqjYYeH7yPW+PGVRSZEKIukQQrbjkaGxscvL0wGwtvcDtabOztqygqIURdI32wQgghhBVIH6wQQghhBdJELG55B2bNZtkzz2OxVNyY0+WN1+j00gs3ISohRG0nTcTilmdISSEhamulEmyD2zvh4Ol5E6ISQtR2kmCFEEIIK5AmYiHKyc/IICM2DgBHH28cfXyqOSIhRG0kNVghypn7wIMcWbAIgMBuXXlk9cpqjkgIURtJghWiHMVkwmgwAKBzcECtlYYeIcS1kwQrhBBCWIFcmotbjiX7JPFrdpCebYdLRFc87fOwcc3n7NINpOY1IHhYT9x0AAVkbl9OzL5MdI0aYZd+krTUAlCpUevrYd+wFQGdmuKgq+53JISoiWSiCXELMZO56GVmjf6VnIZdCRsYie2BL1j41C+c1zeiYc8GJH36IHNeX0ueAmCLc7swDPuT8Oh6Ow2DYtj1/hrUPQcR0qUR5vWv80uHUew5YqzuNyaEqIEkwYpbhnJyKotfjqPZV+/S/DZ/9M6++N7/Dv0fbY6igMq1Od7dIrBbNI7Fv0WjAKgc0Hk4YqMCnJ3Qaevh4O+FY1A7mr/7JwP7HmTl2K9INlXzmxNC1DiSYMUtwkTy7zM5HdqHEL/Sh70Gt8GD8Stu5lV59qXvL8PJfms0G7flVLBNe/yHDsRlzz8cjzZbK3AhRC0lCVbcIkxknU4CBydsLiw6Q8LXw/naswsrl8dQVAlVoev0Jvd94Mu+0S9w5Jxy1a2q3FzRk0NBlowVFEKUJQlW3CJscA8NxnLsECklzblaf/z7t8FBG0TAnUGlRvxpcB05lUGDDrJi1I+cL7xy8jSfOEmmvjGejWS8oBCiLEmw4hahwW3UBFoaZ7N5djwX66UqUJUuZ6EonboQ+MGvdHGcxa6txRlZgTKptuAIu6csRf/Es4S5Wjt+IURtI5fd4pah8ryLu5Zr2fzBOyyPbouPnw5j/Elch/bFU1tA5vbFxK7bgrHHQNrdEYiNtgltZkzj/DsnUeXEEL94CxlZZzj82Zek6w1kHjiMsdd0hj3bGblTRwhRnkw0IYQQQliBNBELIYQQViAJVgghhLACSbBCCCGEFUiCFUIIIaxAEqwQQghhBZJghRBCCCuQBCuEEEJYgSRYIYQQwgokwQohhBBW8P+me6D9QZ9kxwAAAABJRU5ErkJggg==[/img]
4916浏览量 10回复量 关注量 -
运放的输出为啥大到一定的数值,会不再提高?
[i=s] 本帖最后由 tyw 于 2020-11-18 09:23 编辑 [/i] [img]https://bbs.**/data/attachment/forum/202011/18/083648m45sq2ii2b5zcpqs.png.thumb.jpg[/img] VCC=5V 搜索 [align=left]复制[/align] [color=#333333][backcolor=rgb(255, 255, 255)][font=Arial][size=16px]1.给定V1一个定值:0.5V,[/size][/font][/backcolor][/color][color=rgb(65, 131, 196)][backcolor=rgb(255, 255, 255)][font=Arial][size=16px]V[/size][/font][/backcolor][/color]2[color=#333333][backcolor=rgb(255, 255, 255)][font=Arial][size=16px]的值是可调的。[/size][/font][/backcolor][/color] [color=#333333][backcolor=rgb(255, 255, 255)][font=Arial][size=16px]2.0.5V<V2<1V(大概是这个值,可能上下有点出入)的时候,OUT输出是我理想的输出值。[/size][/font][/backcolor][/color] [color=#333333][backcolor=rgb(255, 255, 255)][font=Arial][size=16px]问题:当V2>1V的时候,out输出值总是接近2.75V,我就不太懂为什么了?[/size][/font][/backcolor][/color]
754浏览量 2回复量 关注量 -
虚心请教,这个h桥过流锁定/复位电路可以正常使用吗
[i=s] 本帖最后由 xiaoyuanguo 于 2020-11-14 15:39 编辑 [/i] 对运放的了解不是很深入,现在有个电机驱动的项目,楼主打算使用全桥驱动加MOS的方案;出于成本考虑打算使用采样电阻和运放实现简单的过流自锁/复位功能。楼主的电路图已经搭好;如下[attach]1572158[/attach] [attach]1572160[/attach] 用一片358实现,其中一个作为参考电压,设置过流阀值约为6.2A;二级的比较电路加上正反馈实现自锁,输出连接EG2104M的SD和MCU,MCU检测到锁定信号后可拉低358的3脚实现复位。 但因为对运放的参数了解不多,是不是使用比较器(比如lm393)会更好?还是说先把采样电阻的信号放大在作比较好?(考虑到地平面一些噪声),另外就是电机调速频率为20K,3脚前端的一阶低通滤波是否可能还无法完全滤除开关尖峰干扰?
1882浏览量 17回复量 关注量 -
请教大家采集热电偶信号的运放输出读数不稳问题
Hi 高手们,请教关于一个热电偶信号通过运放采集的问题,热电偶信号(利用温差电效应用于合金测试,由一头恒温滚烫的探头铆上一根线,和另一根线用鳄鱼夹夹住待测合金常温的这边,构成2根类似热电偶的信号线)通过100倍的运放和电压跟随出来读数显示不稳。比如不锈钢是-4到25之间,它会从10多飘到30多。{:sweat:} 我以前测绘的电路如下:一张是给探头恒温加热的电路,一张是信号放大的电路。请大师们帮看看什么造成这么不稳定的,谢谢![em:2:]
1067浏览量 1回复量 关注量 -
关于运放的滤波问题
[i=s] 本帖最后由 tyw 于 2020-9-11 15:24 编辑 [/i] 一直有个问题,信号经过运放放大后,到后级跟随进入CPU,不太明白的是电容C1,C2是起到滤波作用,还是只有C1是滤波,C2是补偿的,请教下,大家有什么看法 [attach]1533728[/attach]
1613浏览量 3回复量 关注量 -
输入一个电压-50V到+50V的电压,如何通过软件进行运放分档?
[attach]1530020[/attach] 这是其中的一档,我想要分为5档,每档的放大倍数不同,现在如何将这个输入切换到这个运放的V+,V-?用继电器? 还有其他的软件切换的方式吗? 还有这个图是否有什么问题? 请大家不吝赐教。
1218浏览量 1回复量 关注量 -
运放输出的范围如何确定?
这是我从手册上截图来的一段表格, 这个是写的是电压输出到轨的电压10K负载下,全温度40mV是指的,最低输出40mV ,最高VCC-40mV这个意思吗?
1070浏览量 3回复量 关注量 -
运放的输出端有一个下拉到地的电阻有什么用?
[i=s] 本帖最后由 像风儿一样清 于 2020-8-29 21:23 编辑 [/i] 我看见很多运放的电路图上,其输出端都有一个下拉到地的电阻,请问这个电阻是起什么作用的?[img]C:\Users\huist\Desktop\自己的东西[/img]就是下图中的R3.
1860浏览量 2回复量 关注量 -
运放电源该怎么处理呢
我的一个运放需要15V的电压,需要保证低功耗和电源的稳定干净,那我的电源该怎么处理呢 较小的电压比如3.3V的我都是加LDO 但15V的我没见过低功耗的LDO 请问是否有这种LDO 如没有那能否使用开关电源加滤波电路再在运放电源入口加电容组这样的方案呢
1164浏览量 4回复量 关注量