||
现在常用的电平标准有TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVPECL、RS232、RS485等,还有一些速
度比较高的LVDS、GTL、PGTL、CML、HSTL、SSTL等。下面简单介绍一下各自的供电电源、电平标准以及使
用注意事项。
TTL:Transistor-Transistor Logic 三极管结构。
Vcc:5V;VOH>=2.4V;VOL<=0.5V;VIH>=2V;VIL<=0.8V。
因为2.4V与5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度
。所以后来就把一部分“砍”掉了。也就是后面的LVTTL。
LVTTL又分3.3V、2.5V以及更低电压的LVTTL(Low Voltage TTL)。
3.3V LVTTL:
Vcc:3.3V;VOH>=2.4V;VOL<=0.4V;VIH>=2V;VIL<=0.8V。
2.5V LVTTL:
Vcc:2.5V;VOH>=2.0V;VOL<=0.2V;VIH>=1.7V;VIL<=0.7V。
更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。
TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入。
CMOS:Complementary l Oxide Semiconductor PMOS+NMOS。
Vcc:5V;VOH>=4.45V;VOL<=0.5V;VIH>=3.5V;VIL<=1.5V。相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与
3.3V的LVTTL直接相互驱动。
3.3V LVCMOS:
Vcc:3.3V;VOH>=3.2V;VOL<=0.1V;VIH>=2.0V;VIL<=0.7V。
2.5V LVCMOS:
Vcc:2.5V;VOH>=2V;VOL<=0.1V;VIH>=1.7V;VIL<=0.7V。
CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定值(比如一些芯片是
0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。
ECL:Emitter Coupled Logic 发射极耦合逻辑电路(差分结构)
Vcc=0V;Vee:-5.2V;VOH=-0.88V;VOL=-1.72V;VIH=-1.24V;VIL=-1.36V。
速度快,驱动能力强,噪声小,很容易达到几百M的应用。但是功耗大,需要负电源。为简化电源,出现
了PECL(ECL结构,改用正电压供电)和LVPECL。
PECL:Pseudo/Positive ECL
Vcc=5V;VOH=4.12V;VOL=3.28V;VIH=3.78V;VIL=3.64V
LVPELC:Low Voltage PECL
Vcc=3.3V;VOH=2.42V;VOL=1.58V;VIH=2.06V;VIL=1.94V
ECL、PECL、LVPECL使用注意:不同电平不能直接驱动。中间可用交流耦合、电阻网络或专用芯片进行转换。以上三种均为射随输出结构,必须有电阻拉到一个直流偏置电压。(如多用于时钟的LVPECL:直流匹配时用130欧上拉,同时用82欧下拉;交流匹配时用82欧上拉,同时用130欧下拉。但两种方式工作后直流电平都在1.95V左右。)
100欧电阻离接收端距离不能超过500mil,最好控制在300mil以内。
下面的电平用的可能不是很多,篇幅关系,只简单做一下介绍。
CML:是内部做好匹配的一种电路,不需再进行匹配。三极管结构,也是差分线,速度能达到3G以上。只能点对点传输。
GTL:类似CMOS的一种结构,输入为比较器结构,比较器一端接参考电平,另一端接输入信号。1.2V电源
供电。
Vcc=1.2V;VOH>=1.1V;VOL<=0.4V;VIH>=0.85V;VIL<=0.75V
PGTL/GTL+:
Vcc=1.5V;VOH>=1.4V;VOL<=0.46V;VIH>=1.2V;VIL<=0.8V